

117

Chapter 4: Caravan park

 Caravan park

Scenario

A caravan park on the Welsh coast provides static caravans which visitors may rent for holidays. The park is
open throughout the year, with weekly bookings running from Saturday afternoon to the following
Saturday morning. The park has groups of caravans, with each group having a different design and offering
different facilities. Caravans have different hire charges.

A web site is required to provide customers with information about the caravans, hire charges and available
weeks, and to handle on-line bookings and payments. The web site should also provide password-
protected staff pages where bookings can be viewed and changes can be made to the prices or availability
of particular caravans.

Within each group, the caravans have names relating to an aspect of the Welsh countryside: flowers, trees,
rivers, mountains and castles. Caravan reference numbers are shown on the site plan, with the caravan
names listed in the table below.

Flower class Tree class River class Mountain class Castle class
1: Daffodil 10: Oak 15: Wye 21: Snowdon 25: Harlech
2: Buttercup 11: Beech 16: Severn 22: Cader Idris 26: Caernarfon
3: Snowdrop 12: Hazel 17: Taff 23: Plynlimon 27: Caerphilly
4: Daisy 13: Holly 18: Dovey 24: Pen y fan 28: Criccieth
5: Bluebell 14: Birch 19: Conwy 29: Beaumaris
6: Cowslip 20: Mawddach 30: Dolwyddelan
7: Foxglove
8: Lily
9: Celandine

4

1 2 3 4
5

6

7

8

9 10 11 12 13 14

15

16

17

18

19

20

21 22 23 24

25

26

27

28

29

30

118

Web-based programming projects

Design

The program will obtain information from an on-line database, arranged in a series of tables as shown in
the entity-relationship diagram below:

The caravanGroup table contains a description and link to a photograph for each group of caravans.
Caravans within a group have the same design and facilities.

The caravanLocation table contains an entry for each caravan, giving its name and a link to the group
description. Four sets of (x,y) coordinates are given for the corners of a rectangle defining the position of
the caravan on the map of the site.

The caravanWeek table contains 52 week records for each caravan covering the current year. The
weekBeginning field of each record specifies the Saturday start date of the hire week. The hire charge for
the week is also listed. Hire charges may differ between quiet and busy times of the year. The available
field specifies whether the caravan is already booked (code 0), available during the specified week (code
1), or unavailable for booking (code 2) - for example, if maintenance is being carried out.

Programming techniques

The web site will introduce the use of JavaScript graphics to produce a more realistic map selection
function than the use of simple buttons. As in the previous projects, classes of objects will form an
interface between the database and the local computer.

 Caravan class

caravanID name description

caravan

object

user interface server software database

119

Chapter 4: Caravan park

The web site will make use of both PHP processing which takes place on the server, and JavaScript
processing which takes place on the local computer. We will need to examine ways of transferring
variables between these two programming languages.

The name and map coordinates for each caravan are held as the attributes of a series of PHP Caravan
objects. This information will also be needed by JavaScript in order to produce the caravan site map
display. The PHP objects are converted into an equivalent set of JavaScript Caravan objects by creating
JSON (JavaScript Object Notation) data. This is a block of text listing the names and values of the attributes
for each object, as in this extract:

120

Web-based programming projects

The JSON data is then used to construct an equivalent set of JavaScript Caravan objects.

A central function of the web site will be the display of an interactive calendar showing bookings. PHP date
functions will be used to produce this display by providing the day name for any date and the number of
days in any month.

Method

Begin by setting up new folders with the name 'caravan' on the local computer and on the server.

Create a header image for the home page using a desk-top publishing or graphics application such as
Microsoft Word or Photoshop. This should consist of a landscape photograph with approximate
dimensions of 1150 pixels by 200 pixels. The company name 'Celtic Holidays' can be added as in the
example below.

Save the file as title.jpg and copy it to the server. All files for the project should be stored in the caravan
folders on the local computer and on the server.

Create an image for a button with the caption 'Information and bookings'. Save the image as button.png

and copy it to the server.

Open a new blank file. Add the HTML code below to create an introductory page.

 <html>
 <head>
 <title>Celtic Holidays</title>
 </head>
 <body>

 <center>

 </body>
</html>

Save the file as index.php and copy it to the caravan folder on the server.

Run the website by entering the domain name for your site, followed by the directory caravan, e.g:

 www.website.com/caravan
The page index.php will be load automatically as the default homepage for the site. Check that this is

similar to the web page illustrated above.

121

Chapter 4: Caravan park

Additional content can be added to the home page if required. This might include descriptions of holiday
attractions in the area, and photographs of the caravan park and its facilities.

The button on the home page will lead to a booking page which we will develop next. This page is focussed
around a plan of the caravan park with the individual caravans marked.

Begin by using a desk-top publishing or graphics application to create a site base map image similar to the
one shown below. This should have a size of approximately 500 pixels by 400 pixels. Save the image as
map.jpg and copy it to the server.

Open a blank file and add the lines of code below to produce a page to display the plan of the site.

<html>
 <head>
 <title> Celtic Holidays </title>
 <style>
 body
 {
 font-family: Arial, Helvetica, sans-serif;
 color: black;
 }
 p { font-size: 12pt;}
 </style>
 </head>
 <body>
 <table>
 <tr>
 <td>

 </td>
 </tr>
 </table>
 </body>

 </html>

122

Web-based programming projects

Save the file as bookings.php and copy it to the server.

Run the web site and click the 'Information and bookings' button on the home page. Check that the
bookings.php page opens and the site plan is displayed.

The design and operation of the bookings page will be quite complex. The layout is illustrated in the screen

print below.

The user will be able to click the mouse on the site plan to select a particular caravan, which will be
highlighted in green. The name of the caravan, along with a photograph and description will then be
displayed. On the lower part of the page, a booking calendar will indicate the available weeks when the
selected caravan may be booked, along with the hire charge. The calendar shows two consecutive months
alongside each other. The month display may be changed by clicking the forwards '>>' and backwards '<<'
buttons.

On clicking a 'make booking' button, the customer will be taken to another page where they will enter their

contact details and make payment.

Log-in to the PHP MyAdmin web page for your database. Display the list of tables in the database and
select the 'new' option. Further information about creating database tables is given in the Hardware Store
project in Chapter 2.

Set up a table with the name 'caravanLocation'. This will contain the name and reference number of each
caravan, along with the (x,y) pixel coordinates of its four corners on the site plan.

Add fields to the table as shown below. The field caravanName is of data type vachar with a length of 30
characters. All other fields are of integer data type. Select locationID to be the primary key, and set this to
auto-increment as records are added to the table.

123

Chapter 4: Caravan park

The pixel coordinates for each caravan can be found by loading the site plan image into a graphics program
such as Microsoft Paint. As the mouse pointer is moved, the coordinates are displayed:

For the purpose of this example, the coordinates shown below will be used. This data should be entered
into the caravanLocation table.

mouse

pointer

mouse x, y

cooordinates

124

Web-based programming projects

We will create a Location class to access data from the database table and form a link to the web page.

Open a blank text file. Add the code shown below which specifies the attributes for a Location object.
Save the file as Location.php and copy it to the server.

 <?

class Location
{

 public static $caravanCount = 0;
 public static $caravan = array();
 public $locationID;
 public $caravanNo;
 public $caravanName;
 public $x1; public $y1;
 public $x2; public $y2;
 public $x3; public $y3;
 public $x4; public $y4;

 }

 ?>

Add a constructor method. As the attributes are private to each object, a set of get() methods will also be
needed to allow access to these attributes from the main program. Please note that long lines of code
marked by curved arrows should be entered by continuous typing without any line breaks.

125

Chapter 4: Caravan park

 function __construct($locationID, $caravanNo, $caravanName, $x1, $y1,
 $x2, $y2, $x3, $y3, $x4, $y4)
 {
 $this->locationID = $locationID;
 $this->caravanNo = $caravanNo;
 $this->caravanName = $caravanName;
 $this->x1 = $x1; $this->y1 = $y1;
 $this->x2 = $x2; $this->y2 = $y2;
 $this->x3 = $x3; $this->y3 = $y3;
 $this->x4 = $x4; $this->y4 = $y4;
 }

 public function getLocationID(){return $this->locationID;}
public function getCaravanNo(){return $this->caravanNo;}
public function getCaravanName(){return $this->caravanName;}

}
 ?>

The next step is to add a method to the Location.php class file which will access the location table in the
database and create a corresponding set of objects. Insert the loadLocations() function at the end of the
class file, as shown on the next page.

Save the Location.php file and copy it to the server.

public static function loadLocations()
{
 include ('user.inc');
 $conn = new mysqli(localhost, $username, $password, $database);
 if (!$conn) {die("Connection failed: ".mysqli_connect_error()); }
 $query="SELECT * FROM caravanLocation";
 $result=mysqli_query($conn, $query);
 $num=mysqli_num_rows($result);
 mysqli_close($conn);
 $i=1;
 while ($i <= $num)
 {
 $row=mysqli_fetch_assoc($result);
 $locationID=$row["locationID"];
 $caravanNo=$row["caravanNo"];
 $caravanName=$row["caravanName"];
 $x1=$row["x1"];
 $y1=$row["y1"];
 $x2=$row["x2"];
 $y2=$row["y2"];
 $x3=$row["x3"];
 $y3=$row["y3"];
 $x4=$row["x4"];
 $y4=$row["y4"];
 $obj = new Location($locationID, $caravanNo, $caravanName,
 $x1, $y1,$x2, $y2, $x3, $y3, $x4, $y4);
 Location::$caravan[$i] = $obj;
 $i++;
 }
 Location::$caravanCount=$num;
 return $num;
}

}
?>

126

Web-based programming projects

Return now to the bookings.php web page file. Change the lines of code inside the <table>…</table>
block.

<body>
 <table>
 <tr>

 <td valign='top' height=480>

 <canvas id="myCanvas" width="510" height="400"
 style="border:1px solid #d3d3d3;">
 </canvas>

 </td>
 </tr>
 </table>

Add lines of code near the start of bookings.php as shown below. These will collect the number of the
caravan and the number of the month to be displayed. To initialise the display, we previously specified
caravan 1 and month 6 as part of the URL linked to the button on the home page.

<html>
 <head>
 <title> Celtic Holidays </title>

 <?
 $caravanNoWanted=$_REQUEST['caravanNoWanted'];
 $monthWanted=$_REQUEST['monthWanted'];
 ?>

 <style>
 body
 {
 font-family: Arial, Helvetica, sans-serif;
 color: black;

Two blocks of code should now be added to bookings.php. The first block of PHP code accesses the

Location class file and obtains a set of objects containing the names and locations of the caravans. These

are then stored in JSON format. A <script> block then converts the JSON data to Javascript objects, and

collects various other information needed to create the graphics display.

 </canvas>
 </td>
 </tr>
 </table>

 <?
 include ('Location.php');
 $count=Location::loadLocations();
 $caravanJSON = json_encode(Location::$caravan);
 ?>
 <script type="text/javascript">
 var caravan = <? echo $caravanJSON ?>;
 var count = <? echo $count ?>;
 var c = document.getElementById("myCanvas");
 var c2 = c.getContext("2d");
 var img = document.getElementById("map");
 var caravanNoWanted= <? echo $caravanNoWanted ?>;
 </script>

 </body>

127

Chapter 4: Caravan park

Within the <script> block, add Javascript functions.

The markCaravan() function will plot each caravan on the site plan as a red filled rectangle, with one
specified caravan coloured instead in green. The rectangles are drawn using the x and y coordinates
obtained from the database table.

The onload() function will operate automatically when the page loads, and will in turn call the

markCaravan() function. The number of the caravan to be highlighted is specified as a parameter.

 var c2 = c.getContext("2d");
 var img = document.getElementById("map");
 var caravanNoWanted= <? echo $caravanNoWanted ?>;

 window.onload = function()
 {
 c2.drawImage(img, 0, 1);
 markCaravan(caravanNoWanted);
 }

 function markCaravan(caravanNoWanted)
 {
 var arrayLength = count;
 for (var i = 1; i <= arrayLength; i++)
 {
 c2.fillStyle = '#FF0000';
 if (caravan[i].caravanNo == caravanNoWanted)
 {
 c2.fillStyle = '#00FF00';
 nameWanted=caravan[i].caravanName;
 }
 c2.beginPath();
 c2.moveTo(caravan[i].x1, caravan[i].y1);
 c2.lineTo(caravan[i].x2, caravan[i].y2);
 c2.lineTo(caravan[i].x3, caravan[i].y3);
 c2.lineTo(caravan[i].x4, caravan[i].y4);
 c2.closePath();
 c2.fill();
 }
 }

 </script>
 </body>
 </html>

Save the bookings.php file and copy it to the server.

Before running the bookings page, a security file will be needed to authorise access to the on-line database.
This has the format:

 <?
$username="YOUR USER NAME";
$password="YOUR PASSWORD";
$database="YOUR DATABASE NAME";

 ?>

Create a blank text file and copy the lines above. Replace "YOUR USER NAME" and "YOUR PASSWORD" with
the username and password which give you access to the PHP MyAdmin website.

128

Web-based programming projects

The entry for "YOUR DATABASE NAME" is normally the same as the username entered on the first line.
Save the small file as user.inc and copy it to the server.

Run the website home page and click the 'bookings' button. Check that the site plan is displayed with most
caravans coloured red and caravan 1 highlighted in green, as shown below.

The next step is to make the map display interactive, so that the user can select and highlight any caravan

by clicking the mouse. Re-open the bookings.php file and modify the code within the <canvas> tag.

<table>
 <tr>
 <td valign='top' height=480>

 <canvas id="myCanvas" width="510" height="400"
 style="border:1px solid #d3d3d3;" onmousedown="mouseDown()">

 </canvas>
 </td>
 </tr>
 </table>

When the mouse is pressed within the graphics area, a function mouseDown() will be called. The function
obtains the position of the mouse pointer relative to the top left corner of the map image. A loop then
checks each of the JavaScript caravan objects in turn. The corner coordinates of the caravan are obtained,
and the position of the rectangle centre is calculated at the intersection of the diagonals:

If the mouse pointer is within 20 pixels of the mid point, the caravan is selected for highlighting and its
identification number is given as the parameter for the markCaravan() function.

Add the mouseDown() function shown below to the JavaScript code block within the <script> tags.

(x1,y1)

(x2,y2)

(x3,y3)

(x4,y4)

(xcentre , ycentre) =

x1 + x3 , y1 + y3
 2 2

129

Chapter 4: Caravan park

function mouseDown()
{
 var x = event.clientX;
 var y = event.clientY;
 var div = document.getElementById("myCanvas");
 var rect = div.getBoundingClientRect();
 var xoff = rect.left;
 var yoff = rect.top;
 x = (x - xoff);
 y = (y - yoff);
 var arrayLength = count;
 for (var i = 1; i <= arrayLength; i++)
 {
 x1=parseInt(caravan[i].x1); y1=parseInt(caravan[i].y1);
 x2=parseInt(caravan[i].x2); y2=parseInt(caravan[i].y2);
 x3=parseInt(caravan[i].x3); y3=parseInt(caravan[i].y3);
 x4=parseInt(caravan[i].x4); y4=parseInt(caravan[i].y4);
 mx=(x1+x3)/2;
 my=(y1+y3)/2;
 xdiff = Math.abs(x-mx);
 ydiff = Math.abs(y-my);
 if ((xdiff<20)&&(ydiff<20))
 {
 caravanNoWanted=caravan[i].caravanNo;
 markCaravan(caravanNoWanted);
 window.location = "bookings.php?caravanNoWanted="+
 caravanNoWanted +"&monthWanted="+monthWanted;
 }
 }
}

</script>
</body>

Save the bookings.php file and copy it to the server. Run the program and check that each caravan can
now be selected and appears highlighted in green.

The next step is to add the photograph and description of the caravan selected. Data for this will be stored
in a table in the database.

Go to the PHP MyAdmin web page for your database, list the tables, and select the 'new' option. Set up a
table with the name caravanDescription and add fields as shown below. The integer field descriptionID
should be specified as the primary key and set to automatically increment as records are added. The
caravanGroup field is also of integer data type, whilst the remaining fields are of type varchar. The sleeps
field has a size of 100 characters, descriptionText is 1,000 characters, and imageName is 30 characters.

130

Web-based programming projects

Obtain suitable picture images for each of the five caravan groups, and write paragraphs of descriptive text.
Upload the image files to the server. Add the description and image file name to the database table for
each of the caravan groups.

A Description class can now be created. This will allow the database records to be transferred to objects in
PHP. These objects can in turn be converted to JavaScript objects for display on the web bookings page.

Open a blank file and add the Description class shown in the two boxes below. This begins by defining
attributes which correspond with the fields of the caravanDescription database table. Methods are then
included to download records from the database and create Description objects.

 <?
 class Description
 {

 public static $groupCount = 0;
 public static $group = array();
 public $descriptionID;
 public $caravanGroup;

 public $sleeps;
 public $descriptionText;

 public $imageName;

 function __construct($descriptionID, $caravanGroup, $sleeps,
 $descriptionText, $imageName)
 {
 $this->descriptionID = $descriptionID;
 $this->caravanGroup = $caravanGroup;
 $this->sleeps = $sleeps;
 $this->descriptionText = $descriptionText;
 $this->imageName = $imageName;
 }

 public static function loadDescriptions()
 {
 include ('user.inc');
 $conn = new mysqli(localhost, $username, $password, $database);
 if (!$conn) {die("Connection failed: ".mysqli_connect_error()); }
 $query="SELECT * FROM caravanDescription";
 $result=mysqli_query($conn, $query);
 $num=mysqli_num_rows($result);
 mysqli_close($conn);
 $i=1;
 while ($i <= $num)
 {
 $row=mysqli_fetch_assoc($result);
 $descriptionID=$row["descriptionID"];
 $caravanGroup=$row["caravanGroup"];
 $sleeps=$row["sleeps"];
 $descriptionText=$row["descriptionText"];

131

Chapter 4: Caravan park

 $imageName=$row["imageName"];
 $obj = new Description($descriptionID, $caravanGroup, $sleeps,
 $descriptionText, $imageName);
 Description::$group[$i] = $obj;
 $i++;
 }
 Description::$groupCount=$num;
 return $num;
 }
 }
 ?>

Save the file as Description.php and copy it to the server.

As in the case of the caravan location data, we will load the Description objects in PHP and then convert

them to JavaScript objects by means of JSON encoding. Re-open the bookings.php file and add the lines of

code shown below.

<?
 include ('Location.php');
 $count=Location::loadLocations();
 $caravanJSON = json_encode(Location::$caravan);

 include ('Description.php');
 $groupCount=Description::loadDescriptions();
 $descriptionJSON = json_encode(Description::$group);

 ?>

<script type="text/javascript">
 var caravan = <? echo $caravanJSON ?>;
 var count = <? echo $count ?>;

 var description = <? echo $descriptionJSON ?>;
 var groupCount = <? echo $groupCount ?>;
 var monthWanted = <? echo $monthWanted ?>;

 var c = document.getElementById("myCanvas");
 var c2 = c.getContext("2d");

Go now to the beginning of the table and locate the <td> ...</td> block holding the map image. After this,

insert program code to display the name of the caravan selected, its image and description.

 <td valign='top' height=480>

 <canvas id="myCanvas" width="510" height="400"
 style="border:1px solid #d3d3d3;" onmousedown="mouseDown()">
 </canvas>
 </td>

 <td width=100></td>
 <td width = 400 style="vertical-align:top">
 <h3><p id="caravanName" ></p></h3>

 <p id="sleeps" ></p>
 <p id="descriptionText" ></p></td>

</tr>

132

Web-based programming projects

</table>

Finally, locate the JavaScript markCaravan() function. At the end, add a line of code to set the caravan
name which will be displayed.

 function markCaravan(caravanNoWanted)
 {

 c2.lineTo(caravan[i].x4, caravan[i].y4);
 c2.closePath();
 c2.fill();
 }

 document.getElementById("caravanName").textContent = nameWanted;

 }

Save the bookings.php file and copy it to the server. Run the website and go to the bookings page. Check
that clicking on any caravan causes the correct name to be displayed on the right of the screen.

Re-open the bookings.php file. Immediately after the 'caravan name' line, insert a block of code which will
locate and display the appropriate photograph and description for the caravan group containing the
selected caravan.

 c2.fill();
}
document.getElementById("caravanName").textContent = nameWanted;

c=getCaravanGroup(caravanNoWanted);
for (j=1;j<=groupCount;j++)
{
 if (description[j].caravanGroup == c)
 {
 document.getElementById("caravanImage").src = description[j].imageName;
 document.getElementById("sleeps").textContent = description[j].sleeps;
 document.getElementById("descriptionText").textContent =
 description[j].descriptionText;
 }
}

}

A final step is to add a JavaScript function which will use the caravan reference number to determine the
reference number of the group to which it belongs.

Immediately after the markCaravan() function, add a getCaravanGroup() function as shown below.

133

Chapter 4: Caravan park

 document.getElementById("sleeps").textContent = description[j].sleeps;

 document.getElementById("descriptionText").textContent =
 description[j].descriptionText;
}

 }
}

function getCaravanGroup(caravanNoWanted)
{
 var group=1;
 if (caravanNoWanted>9)
 group=2;
 if (caravanNoWanted>14)
 group=3;
 if (caravanNoWanted>20)
 group=4;
 if (caravanNoWanted>24)
 group=5;
 return group;
}

function mouseDown()

 {
 var x = event.clientX;
 var y = event.clientY;

Save the bookings.php file and copy it to the server. Run the website and go to the bookings page. Select

caravans from each of the groups and check that the picture image and description text is displayed

correctly, as in the illustration below.

If the text for any group fails to appear, a common problem is that an apostrophe symbol (') has been used
in the description. This symbol is a control character and can affect the loading of data. A simple solution
is to replace apostrophes in the database text with an alternative but very similar symbol (`) which is found
on the top left hand key of most keyboards.

Before leaving this section, it is useful to note that the two object classes Location and Description have
their attributes set as public, rather than private as in most object classes. This was necessary in order to
allow access to the attributes when creating JSON data.

134

Web-based programming projects

The next step is to work on the bookings calendar. Go to the PHP MyAdmin web site and create a new

table with the name caravanWeeks. This will contain a record for each caravan for each week of the year.

The available field will use a code number to indicate whether the caravan is already booked (0), available

for hire (1), or unavailable for hire (2) during the specified week.

Add fields to the table as shown below. The caravanWeekID field should be specified as the primary key,

and set to auto-increment as records are added. Other fields are of integer data type, with the exception

of available, which can be set as a small integer, and price which is set as a decimal number displaying two

decimal places.

We will now produce a CaravanWeek class file to load records from the database and create a set of
CaravanWeek objects which can be accessed by the booking calendar display.

Open a blank file and add the block of code below, being careful to avoid line breaks in long lines of code.
This begins by defining the attributes for a CaravanWeek object, then provides a constructor method for
the objects. Save the file as CaravanWeek.php.

<?
class CaravanWeek
{
 public static $weekCount;
 public static $week= array();
 private $caravanWeekID;
 private $caravanNo;
 private $year;
 private $month;
 private $day;
 private $price;
 private $available;
 private $bookingID;

 function __construct($caravanWeekID, $caravanNo, $year,
 $month, $day, $price, $available, $bookingID)
 {
 $this->caravanWeekID = $caravanWeekID;
 $this->caravanNo = $caravanNo;
 $this->yearBeginning = $year;
 $this->monthBeginning = $month;
 $this->dayBeginning = $day;
 $this->price = $price;
 $this->available = $available;
 $this->bookingID = $bookingID;
 }
}
?>

135

Chapter 4: Caravan park

Add a series of get() methods which will allow access to the private object attributes from the main

program.

 public function getCaravanWeekID(){return $this->caravanWeekID;}
 public function getCaravanNo(){return $this->caravanNo;}
 public function getYearBeginning(){return $this->yearBeginning;}
 public function getMonthBeginning(){return $this->monthBeginning;}
 public function getDayBeginning(){return $this->dayBeginning;}
 public function getPrice(){return $this->price;}
 public function getAvailable(){return $this->available;}
 public function getBookingID(){return $this->bookingID;}

}
?>

Add a loadCaravanWeeks() method as show below. This will access the database and obtain the weekly
booking records for a specified caravan.

 public static function loadCaravanWeeks($caravanNoWanted)
 {
 include ('user.inc');
 $conn = new mysqli(localhost, $username, $password, $database);
 if (!$conn) {die("Connection failed: ".mysqli_connect_error()); }
 $query="SELECT * FROM caravanWeeks WHERE caravanNo=".$caravanNoWanted;
 $result=mysqli_query($conn, $query);
 $num=mysqli_num_rows($result);
 mysqli_close($conn);
 $i=1;
 while ($i <= $num)
 {
 $row=mysqli_fetch_assoc($result);
 $caravanWeekID=$row["caravanWeekID"];
 $caravanNo=$row["caravanNo"];
 $yearBeginning=$row["year"];
 $monthBeginning=$row["month"];
 $dayBeginning=$row["day"];
 $price=$row["price"];
 $available=$row["available"];
 $bookingID=$row["bookingID"];
 $obj = new CaravanWeek($caravanWeekID, $caravanNo,
 $yearBeginning,$monthBeginning, $dayBeginning,
 $price, $available, $bookingID);
 CaravanWeek::$week[$i] = $obj;
 $i++;
 }
 CaravanWeek::$weekCount=$num;
 return $num;
 }

 }
 ?>

Save the CaravanWeek.php file.

It is intended that the booking system should display a calendar with available and unavailable weeks
shown in different colours, as in the example below:

136

Web-based programming projects

Before setting up the calendar, we will create a set of test data. As this would be a large job to carry out

manually, we will automate the process.

Add the initialiseBookings() method to the CaravanWeek class file after the loadCaravanWeeks() method,
as shown on the two pages below.

The program uses loops which repeat for each week of the year and for each caravan. The hire cost for the

caravan is set according to the caravan group and the month of the year, with lower prices outside the

main holiday period. The program then generates a random value between 0 and 2 for the available field,

creating a random pattern of bookings through the year for each caravan. Finally, each weekly record is

saved into the database table.

 public static function initialiseBookings($year)
 {
 include('user.inc');
 $conn = new mysqli(localhost, $username, $password, $database);
 if (!$conn) {die("Connection failed: ".mysqli_connect_error()); }
 for ($month=1; $month<=12; $month++)
 {
 $dt = $year."-".$month."-01";
 $firstDay= date("D", strtotime($dt));
 $lastDay= cal_days_in_month(CAL_GREGORIAN,$month,$year);
 for ($i=1; $i<=$lastDay; $i++)
 {
 $day = date("D", strtotime($year."-".$month."-".$i));
 if ($day == "Sat")
 {
 $weekBeginning = $year."-".$month."-".$i;
 for ($van=1; $van<=30; $van++)
 {
 if ($van<=9)
 {
 if ($month>=4 && $month<=8)
 $price = 580.00;
 else
 $price = 420.00;
 }
 else
 {
 if ($van<=14)
 {
 if ($month>=4 && $month<=8)
 $price = 620.00;
 else
 $price = 460.00;
 }
 else

137

Chapter 4: Caravan park

 if ($van<=14)
 {
 if ($month>=4 && $month<=8)
 $price = 620.00;
 else
 $price = 460.00;
 }
 else

 {
 if ($van<=20)
 {
 if ($month>=4 && $month<=8)
 $price = 550.00;
 else
 $price = 430.00;
 }
 else
 {
 if ($van<=24)
 {
 if ($month>=4 && $month<=8)
 $price = 780.00;
 else
 $price = 620.00;
 }
 else
 {
 if ($month>=4 && $month<=8)
 $price = 590.00;
 else
 $price = 440.00;
 }
 }
 }
 }
 $bookingCode=rand(0,2);
 $query="INSERT INTO caravanWeeks VALUES ('','$van','$year',
 '$month', '$i','$price','$bookingCode','0')";
 echo"
".$query;
 $result=mysqli_query($conn, $query);
 }
 }
 }
 }
 mysqli_close($conn);
 }

 }
 ?>

Save the CaravanWeek.php file and copy it to the server.

Re-open the bookings.php file. Add temporary lines of code at the start of the file which will run the
initialiseBookings() method when the page is loaded.

The method includes the booking calendar year number as a parameter. Set this to the year that you want

the calendar to show, e.g. initialiseBookings(2022)

138

Web-based programming projects

<?
 include('CaravanWeek.php');
 CaravanWeek::initialiseBookings(2020);
?>

<html>
 <head>
 <title> Celtic Holidays </title>

Save bookings.php and copy it to the server. Load the website homepage and click the 'bookings' button.
Weekly records for each caravan and week of the year will be listed for test purposes, followed by the
caravan site map. Close the page by clicking the cross symbol on the browser tab. It is important that the
initialiseBookings() method is run only once, to avoid creating duplicate records in the database.

Go to the PHP MyAdmin web page and open the caravanWeeks table. If all has gone well, this should now
contain a full set of 52 weekly records from the beginning of January to the end of December for each of
the 30 caravans, making 1,560 records in total. The available field should show a random pattern of 0, 1
and 2 code values.

Re-open the bookings.php file and remove the lines of PHP code shown in the rounded box at the top of
this page. At this point it will be useful to add some further formatting to the <style> ... </style> block as
shown in the two boxes below. This will be needed to produce the calendar display. The background-color
commands specify different colour shading for booked, available and unavailable weeks.

 p { font-size: 12pt;}

 table.cal {
 border-collapse: collapse;
 }
 th.cal, td.cal, td.av, td.bk {
 border: 1px solid gray;
 }
 th.cal {
 background-color: #cfcfcf;
 color: black;
 padding: 15px;
 text-align: left;
 }

 </style>

Set to the required

calendar year, e.g. 2022

139

Chapter 4: Caravan park

 th.cal {
 background-color: #cfcfcf;
 color: black;
 padding: 15px;
 text-align: left;
 }

 td.cal {
 padding: 5px;
 text-align: left;
 background-color: #ffffff;
 }
 td.av {
 padding: 5px;
 text-align: left;
 background-color: #ffe699;
 }
 td.bk {
 padding: 5px;
 text-align: left;
 background-color: #ff9090;
 }

 </style>

We will begin the calendar display by creating forward >> and back << buttons below the map and caravan

description, to allow the calendar months to be selected.

Add lines of program code to bookings.php as shown below.

 window.location = "bookings.php?caravanNoWanted="+caravanNoWanted
 +"&monthWanted="+monthWanted;
 }
 }
 }
 </script>

 <?
 echo"<form method=post action='bookings.php?caravanNoWanted=".
 $caravanNoWanted."&monthWanted=".$monthWanted."'>";
 ?>
 <table width=900>
 <tr>
 <td width=320>
 <td width=560><input type=submit name='changeMonth' value='<<'>
 <td width=560>
 <td><input type=submit name='changeMonth' value='>>'>
 </table>
 </form>

 </body>
 </html>

140

Web-based programming projects

Save the bookings.php file and copy it to the server. Run the website and go to the bookings page. Check
that the forward and back buttons are displayed.

Re-open the bookings.php file. Add lines of code after the </table> tag as shown below.

 <input type=submit name='changeMonth' value='<<'>
 <td width=560>
 <td><input type=submit name='changeMonth' value='>>'>
 </table>

 <?
 include('CaravanWeek.php');
 $weekCount=CaravanWeek::loadCaravanWeeks($caravanNoWanted);
 $p=0;
 $q=0;
 for($i=1; $i<=$weekCount; $i++)
 {
 $yearFound = CaravanWeek::$week[$i]->getYearBeginning();
 $monthFound = CaravanWeek::$week[$i]->getMonthBeginning();
 $dayFound = CaravanWeek::$week[$i]->getDayBeginning();
 $available = CaravanWeek::$week[$i]->getAvailable();
 $price = CaravanWeek::$week[$i]->getPrice();
 $weekBeginning=$dayFound."-".$monthFound."-".$yearFound;
 $nextMonth=intval($monthWanted+1);
 }
 ?>

 </form>

This block of code opens the CaravanWeek class file and runs the loadCaravanWeeks() method to load the
52 weekly booking objects for the selected caravan for the current year. A loop then operates for each
week, using get() methods to obtain the attribute values from the objects.

The next step is to create arrays which hold the hire charge caption[], start date weekBeginning[], and

availability bookingCode[] for each of the calendar rows:

caption1[1] weekBeginning1[1] bookingCode1[1]

caption1[6] weekBeginning1[6] bookingCode1[6]

caption2[1] weekBeginning2[1] bookingCode2[1]

caption2[6] weekBeginning2[6] bookingCode2[6]

141

Chapter 4: Caravan park

The program reads the booking records in weekly order from the beginning of January to the end of
December. If the week belongs entirely in the first selected month, as in the case of 4 July in the calendar
above, the values are entered into the first set of arrays. If the week belongs entirely in the second
selected month, as in the case of 8 August, the values are entered into the second set of arrays.

The situation is a little more complex in the case of weeks which are only partly in a selected month, as in
the case of week 1 on the July calendar which actually began on 27 June. To allow for this, the program
remembers the previous week's data, so that the booking code can be correctly recorded if a partial week is
encountered at the start of the month. Add lines of code to process the bookings, as shown below.

 $price = CaravanWeek::$week[$i]->getPrice();
 $weekBeginning=$dayFound."-".$monthFound."-".$yearFound;
 $nextMonth=intval($monthWanted+1);

 if($monthFound==$monthWanted)
 {
 if (($dayFound>1)&&($dayFound<8))
 {
 $p++;
 $weekBeginning1[$p]=$previousWeekBeginning;
 $caption1[$p]=$previousPrice;
 $bookingCode1[$p]=$previousAvailable;
 }
 }
 if ($monthFound==$monthWanted)
 {
 $p++;
 $weekBeginning1[$p]=$weekBeginning;
 $caption1[$p]=$price;
 $bookingCode1[$p]=$available;
 }

 if($monthFound==$nextMonth)
 {
 if (($dayFound>1)&&($dayFound<8))
 {
 $q++;
 $weekBeginning2[$q]=$previousWeekBeginning;
 $caption2[$q]=$previousPrice;
 $bookingCode2[$q]=$previousAvailable;
 }
 }
 if ($monthFound==$nextMonth)
 {
 $q++;
 $weekBeginning2[$q]=$weekBeginning;
 $caption2[$q]=$price;
 $bookingCode2[$q]=$available;
 }
 $previousWeekBeginning=$weekBeginning;
 $previousAvailable=$available;
 $previousPrice=$price;

}

$dt = $yearFound."-".$monthWanted."-01";
$firstDay1= date("D", strtotime($dt));
$lastDay1= cal_days_in_month(CAL_GREGORIAN,$monthWanted,$yearFound);
$dt = $yearFound."-".$nextMonth."-01";
$firstDay2= date("D", strtotime($dt));
$lastDay2= cal_days_in_month(CAL_GREGORIAN,$nextMonth,$yearFound);

?>

142

Web-based programming projects

At the end of this section, lines of code have been added to determine the day name for the first day of the
month, and the number of days in the month. In the case of the calendar displayed above, the results
returned will be:
 July 2020 first day = Wed last day = 31
 August 2020 first day = Sat last day = 31

The next task is to update the months displayed when either the forward or back button is clicked. Go to

the beginning of the bookings.php file and add lines of code to do this.

<html>
 <head>
 <title> Celtic Holidays </title>
 <?
 $caravanNoWanted=$_REQUEST['caravanNoWanted'];
 $monthWanted=$_REQUEST['monthWanted'];

 $changeMonth=$_REQUEST['changeMonth'];
 if ($changeMonth=='>>')
 {
 $monthWanted++;
 if ($monthWanted>11)
 $monthWanted=11;
 }
 if ($changeMonth=='<<')
 {
 $monthWanted--;
 if ($monthWanted<1)
 $monthWanted=1;
 }

 ?>
 <style>

We will now continue to develop the calendar display, beginning with the month and day headings.

Two month headings will be needed, along with the sequence of days from Saturday to Friday within each
booking week.

Near the end of the bookings.php file, insert the block of program code shown below. This begins with a
function to convert the month number into the equivalent month name. Loops are then used to display
the month and day headings.

143

Chapter 4: Caravan park

 $dt = $yearFound."-".$nextMonth."-01";
 $firstDay2= date("D", strtotime($dt));

 $lastDay2= cal_days_in_month(CAL_GREGORIAN,$nextMonth,$yearFound);
 ?>
 </form>

 <?
 function getMonthName($month)
 {
 switch($month)
 {
 case 1:$monthName='January';break;
 case 2:$monthName='February';break;
 case 3:$monthName='March';break;
 case 4:$monthName='April';break;
 case 5:$monthName='May';break;
 case 6:$monthName='June';break;
 case 7:$monthName='July';break;
 case 8:$monthName='August';break;
 case 9:$monthName='September';break;
 case 10:$monthName='October';break;
 case 11:$monthName='November';break;
 case 12:$monthName='December';break;
 }
 return $monthName;
 }
 echo"<form method=post action='customerDetails.php?caravanNoWanted="
 .$caravanNoWanted."'>";
 echo"<table class='cal' width=1100>";
 echo"<tr><td>";
 $firstMonth=getMonthName($monthWanted);
 $nextMonth=intval($monthWanted+1);
 $secondMonth=getMonthName($nextMonth);
 $year = CaravanWeek::$week[1]->getYearBeginning();
 echo"<th class='cal' colspan=7 >".$firstMonth." ".$year."</th>";
 echo"<th class='cal' colspan=7 >".$secondMonth." ".$year."</th><th>";
 $dayName[1]='Sat'; $dayName[2]='Sun';
 $dayName[3]='Mon'; $dayName[4]='Tue';
 $dayName[5]='Wed'; $dayName[6]='Thu';
 $dayName[7]='Fri';
 echo"<tr><td>";
 for($n=1;$n<=2;$n++)
 {
 for($d=1;$d<=7;$d++)
 {
 echo"<td class='cal' width=50>".$dayName[$d];
 }
 }
 echo"</form>";
 ?>

</body>

Save the bookings.php file and copy it to the server. Run the website and go to the bookings page. Check

that the calendar headings are displayed correctly.

Re-open the bookings.php file and add lines of program to display the day entries for the first month.

144

Web-based programming projects

 for($n=1;$n<=2;$n++)

{
 for($d=1;$d<=7;$d++)
 {
 echo"<td class='cal' width=50>".$dayName[$d];
 }
}

$count1=0;
$count2=0;
$display1=false;
$display2=false;
for ($w=1;$w<=6;$w++)
{
 echo"<tr>";
 if ($bookingCode1[$w]==1)
 echo"<td align=right width=320> £".$caption1[$w].
 " <button name='week' value='$weekBeginning1[$w]£$caption1[$w]'>
 make booking > </button>";
 else
 echo"<td width=320>";
 for ($d=1;$d<=7;$d++)
 {
 if ($firstDay1==$dayName[$d])
 $display1=true;
 if ($count1>=$lastDay1)
 $display1=false;
 if ($display1==true)
 {
 $count1++;
 if ($bookingCode1[$w]==1)
 echo"<td class='av' width=50>".$count1;
 else
 if (($bookingCode1[$w]==0)||($bookingCode1[$w]==2))
 echo"<td class='bk' width=50>".$count1;
 else
 echo"<td class='cal' width=50>".$count1;
 }
 else
 echo "<td class='cal' width=50> ";
 }
}

echo"</form>";
?>

 </body>
 </html>

Save the bookings.php file and copy it to the server. Run the website and go to the bookings page. The

left-hand month calendar should now be displayed.

145

Chapter 4: Caravan park

Six rows are provided in the calendar to allow for a possible maximum of six separate weeks, as in the
example above. Day numbering begins on the starting day of the month, which in this case is a Friday.
Numbering of the cells continues until the final day of the month is reached: in this case, day 31.

Each booking week begins on a Saturday. Availability data is used to set the colour background for the
week, and is accessed from the array created earlier. In the case of the first week actually beginning in the
previous month, the availability data from this earlier Saturday date will be used to set the background
colour.

Where a week is available, the hire charge is shown and a button is provided to make a booking. We will
link the button to another web page where the customer will enter their contact details and make
payment.

Check that the backward<< and forward>> buttons allow the month to be changed. Weeks will be shown
randomly as available or unavailable. The earliest month which can be reached should be January, and the
latest month November.

Re-open the bookings.php file and add the similar block of code listed below to create the right-hand

calendar display.

 if (($bookingCode1[$w]==0)||($bookingCode1[$w]==2))
 echo"<td class='bk' width=50>".$count1;
 else
 echo"<td class='cal' width=50>".$count1;
 }
 else
 echo "<td class='cal' width=50> ";
 }

 for ($d=1;$d<=7;$d++)
 {
 if ($firstDay2==$dayName[$d])
 $display2=true;
 if ($count2>=$lastDay2)
 $display2=false;
 if ($display2==true)
 {
 $count2++;
 if ($bookingCode2[$w]==1)
 echo"<td class='av' width=50>".$count2;
 else
 if (($bookingCode2[$w]==0)||($bookingCode2[$w]==2))
 echo"<td class='bk' width=50>".$count2;
 else
 echo"<td class='cal' width=50>".$count2;
 }
 else
 echo "<td class='cal' width=50> ";
 }
 if ($bookingCode2[$w]==1)
 echo"<td width=320><button name='week'
 value='$weekBeginning2[$w]£$caption2[$w]'>
 make booking </button> £".$caption2[$w];
 else
 echo"<td width=320>";

}
echo"</form>";
?>

 </body>

146

Web-based programming projects

Save the bookings.php file and copy it to the server. Run the website and go to the bookings page. Check
that both calendar months are now displayed, and that the month can be changed by means of the forward
and back buttons. Click on different caravans on the site map. The pattern of bookings should be randomly
different for each caravan.

A flow chart summarising the sequence of events during a booking is given below.

147

Chapter 4: Caravan park

We can now move ahead to produce a customer booking page. Open a blank file and add the program

code below.

 <html>
 <head>
 <title> Celtic Holidays </title>
 <style>
 body {font-family: Arial, Helvetica, sans-serif; color: black;}
 </style>
 </head>
 <body>
 <?
 $text=$_REQUEST['week'];
 $data=explode("£",$text);
 $weekBeginning=$data[0];
 $price=$data[1];
 $caravanNo=$_REQUEST['caravanNoWanted'];
 echo"<form method=post action='confirm.php?caravan=$caravanNo
 &week=$weekBeginning'>";
 ?>
 <table cellpadding=4>
 <tr>
 <td colspan=3><h3>Booking</td></tr>
 <tr><td><td width=200>Caravan:
 <td>
 <?
 include ('Location.php');
 Location::loadLocations();
 $caravanName=Location::getName($caravanNo);
 echo $caravanName;
 ?>
 <tr><td><td width=200>Week beginning:
 <td>
 <?
 echo $weekBeginning;
 ?>
 </table>
 </form>
 </body>
 </html>

Save the file as customerDetails.php and copy it to the server.

The name of the caravan should be displayed on the customer booking page, rather than its reference

number. We will add methods to the Location class file to obtain the caravan name and number. Open the

Location.php file and add the getName() method shown below.

 public static function getName($numberWanted)
 {
 for ($i=1;$i<=Location::$caravanCount;$i++)
 {
 if (Location::$caravan[$i]->caravanNo == $numberWanted)
 {
 $nameWanted=Location::$caravan[$i]->caravanName;
 }
 }
 return $nameWanted;
 }

 }
 ?>

148

Web-based programming projects

Save the Location.php file and copy it to the server.

Run the website. Go to the booking page. Select a caravan and calendar month, then click the 'make
booking' button for an available week. Check that the customer details page opens, and that the caravan
name and booking week are displayed correctly.

We will now add input boxes for the customer's name and address, as shown below. Note that two tables
are used for the booking and customer details sections of the page.

Re-open the customerDetails.php file and add the lines of code shown in the two boxes below.

 <tr>
 <td><td width=200>Week beginning:
 <td>
 <?
 echo $weekBeginning;
 ?>
 </table>

 <table cellpadding=4>
 <tr>
 <td colspan=3>
<h3>Customer details</td></tr>
 <tr>
 <td align='right'>Title
 <td>
 <?
 $t[0]='Mr';
 $t[1]='Mrs';
 $t[2]='Miss';
 $t[3]='Ms';
 $t[4]='Dr';
 echo"<select name='title'>";
 for ($i=0; $i<=4; $i++)
 {
 if ($title == $t[$i])
 echo"<option selected>".$t[$i];
 else
 echo"<option>".$t[$i];
 }
 echo"</select>";

<table>

</table>
<table>

</table>

149

Chapter 4: Caravan park

 }
 echo"</select>";

 ?>

 Forename

 <?
 echo"<input type=text name=forename id=forename value='$forename'>";
 ?>

 Surname

 <?
 echo"<input type=text name=surname id=surname value='$surname'>";
 ?>
 </table>

 </form>
 </body>
 </html>

Save the customerDetails.php file and copy it to the server. Run the website, go to the bookings page and
click a 'make booking' button. Check that the customer name input boxes are displayed correctly, including
a drop-down selection for 'Title'.
Re-open the customerDetails.php file. Add the further lines of code shown below which input the
customer's address.

 <?
 echo"<input type=text name=surname id=surname value='$surname'>";
 ?>

 <tr>
 <td align='right'>Address
 <td>
 <?
 echo"<input type=text name=address1 size=30 value='$address1'>";
 ?>
 <tr>
 <td><td>
 <?
 echo"<input type=text name=address2 size=30 value='$address2'>";
 ?>
 <tr>
 <td align='right'>Town
 <td>
 <?
 echo"<input type=text name=town value='$town'>";
 ?>

 Postcode

 <?
 echo"<input type=text name=postcode value='$postcode'>";
 ?>

 </table>
 </form>
 </body>
 </html>

150

Web-based programming projects

Save the customerDetails.php file and copy it to the server. Run the website and make a booking. Check
that the address input boxes are displayed correctly.

Notice that non-breaking space characters () have been used to separate the input boxes and
captions. Multiple blank spaces in HTML code are normally ignored, but space characters allow multiple
spaces to be included in the page layout.

Re-open the customerDetails.php file. The final section of the page will display the hire charge for the
caravan week selected and request the user to enter payment details. Add the lines of code shown below.

 Postcode

 <?
 echo"<input type=text name=postcode value='$postcode'>";
 ?>

 <tr>
 <td colspan=3>
<h3>Payment</td></tr>
 <tr>
 <td align='right'>Payment due:
 <td>
 <?
 echo "£".$price;
 echo"<input type=hidden name='paymentAmount' value='".$price."'>";
 ?>
 <tr>
 <td align='right'>Card type
 <td>
 <?
 $t[0]='';
 $t[1]='Visa Credit';
 $t[2]='Visa Debit';
 $t[3]='Mastercard Credit';
 $t[4]='Mastercard Debit';
 echo"<select name='cardType'>";
 for ($i=0; $i<5; $i++)
 {
 if ($cardType == $t[$i])
 echo"<option selected>".$t[$i];
 else
 echo"<option>".$t[$i];
 }
 echo"</select>";
 ?>
 Card number
 <?
 echo"<input type=text name='cardNumber' value='$cardNumber'>";
 ?>
 Expires: month/year
 <?
 echo"<input type=text name='expireMonth' size=2 value='$expireMonth'>";
 ?>
 /
 <?
 echo"<input type=text name='expireYear' size=3 value='$expireYear'>";
 ?>

 </table>
 </form>
 </body>

151

Chapter 4: Caravan park

To finish the page display, add the lines of code below to create two buttons labelled 'complete booking'
and 'cancel'.

 <?
 echo"<input type=text name='expireYear' size=3 value='$expireYear'>";
 ?>

 </table>

 <p>

 <button style='position:absolute;left:360px; font-size:16px;
 border-radius: 4px;width: 186px;background-color: #1184DF;
 color: white'>complete booking</button>
 </form>

 <form method='post' action='index.php'>
 <button style='position:absolute;left:360px; font-size: 16px;
 border-radius: 4px;width: 186px;background-color: white;
 color: black'>cancel</button>

 </form>
 </body>

Save the customerDetails.php file and copy it to the server. Run the website and make a booking. Check
that all input boxes are displayed correctly, and that the two buttons appear at the bottom of the page.

Clicking 'cancel' will return the user to the home page. The next step is to program the 'complete booking'
button. This will carry out some error checking before saving the booking record.

Re-open the customerDetails.php file. Modify the <form> command to run a JavaScript function
checkInput():

 $weekBeginning=$data[0];
 $price=$data[1];
 $caravanNo=$_REQUEST['caravanNoWanted'];

 echo"<form method=post action='confirm.php?caravan=$caravanNo&week
 =$weekBeginning' onsubmit='return checkInput()'>";

 ?>

152

Web-based programming projects

Add a <script> block containing this function.

 $weekBeginning=$data[0];
 $price=$data[1];
 $caravanNo=$_REQUEST['caravanNoWanted'];
 echo"<form method=post action='confirm.php?caravan=$caravanNo
 &week=$weekBeginning' onsubmit='return checkInput()'>";

 ?>

 <script>
 function checkInput()
 {
 forename = document.getElementById("forename").value;
 surname = document.getElementById("surname").value;
 var error=false;
 var n = forename.length;
 if (n<1)
 {
 alert("Forename must be entered");
 error=true;
 }
 n = surname.length;
 if (n<1)
 {
 alert("Surname must be entered");
 error=true;
 }
 if (error==true)
 result=false;
 else
 result = true;
 return result;
 }
 </script>

 <table cellpadding=4>
 <tr>
 <td colspan=3><h3>Booking</h3></td></tr>

Save the customerDetails.php file and copy it to the server. Run the website and make a booking. Click the

'complete booking' button without entering any data. Warning messages should appear to indicate that

Forename and Surname entries are missing. Additional validation could be added if required.

The next step is to create a database table to store bookings. Go to the PHP MyAdmin web site and log-in

to the database. List the existing database tables and select the 'new' option.

Set up a table with the name 'caravanBooking'. Add fields with the names and data types sown below. Set

the bookingID field to auto-increment as records are added.

153

Chapter 4: Caravan park

As with previous tables, we will create a class file to act as a link to the web page.

 CaravanBooking class

Open a blank file and add lines of program code as shown below. These begin by defining the attributes of

a CaravanBooking object, corresponding to the fields of the caravanBooking table. A public static array

$booking[] will identify individual objects.

<?
class CaravanBooking
{
 public static $booking = array();
 public static $bookingCount;
 private $bookingID;
 private $paymentDate;
 private $caravanNo;
 private $weekBeginning;
 private $title;
 private $forename;
 private $surname;
 private $address1;
 private $address2;
 private $town;
 private $postcode;
 private $paymentAmount;
 private $cardType;
 private $cardNumber;
 private $expiryDate;

}
?>

bookingID customer caravan

caravan
booking
object

user interface server software database

154

Web-based programming projects

Add a constructor method.

 public function __construct($bookingID, $paymentDate, $caravanNo,$weekBeginning,
 $title,$forename, $surname, $address1, $address2, $town,
 $postcode,$paymentAmount, $cardType, $cardNumber, $expiryDate)
 {
 $this->bookingID = $bookingID;
 $this->paymentDate = $paymentDate;
 $this->caravanNo = $caravanNo;
 $this->weekBeginning = $weekBeginning;
 $this->title = $title;
 $this->forename = $forename;
 $this->surname = $surname;
 $this->address1 = $address1;
 $this->address2 = $address2;
 $this->town = $town;
 $this->postcode = $postcode;
 $this->paymentAmount = $paymentAmount;
 $this->cardType = $cardType;
 $this->cardNumber = $cardNumber;
 $this->expiryDate = $expiryDate;
 }

}
?>

 Save the file as CaravanBooking.php.

We will now produce a web page which will be loaded when the customer clicks the 'complete booking'
button. This will save the booking details into the database, and display a message confirming the booking.
Open a blank file and add the program code shown below. This begins by obtaining the customer name,
address and payment entries from the input boxes on the customerDetails page.

<html>
<head>
 <title> Celtic Holidays </title>
 <style>
 body {font-family: Arial, Helvetica, sans-serif; color: black; }
 </style>

</head>
<body>
 <p>
 <?
 $title = $_REQUEST["title"];
 $forename = $_REQUEST["forename"];
 $surname = $_REQUEST["surname"];
 $address1 = $_REQUEST["address1"];
 $address2 = $_REQUEST["address2"];
 $town = $_REQUEST["town"];
 $postcode = $_REQUEST["postcode"];
 $email = $_REQUEST["email"];
 $cardType = $_REQUEST["cardType"];
 $cardNumber = $_REQUEST["cardNumber"];
 $expireMonth = $_REQUEST["expireMonth"];
 $expireYear = $_REQUEST["expireYear"];
 $expiryDate = $expireMonth."/".$expireYear;
 $paymentAmount = $_REQUEST["paymentAmount"];
 ?>

</body>
</html>

155

Chapter 4: Caravan park

Add a table:

 $expiryDate = $expireMonth."/".$expireYear;
 $paymentAmount = $_REQUEST["paymentAmount"];
 ?>

 <table cellpadding=10>
 <form method=post action='index.php'>
 <tr>
 <th>Your booking is confirmed</th>
 </tr>
 </form>
 </table>

</body>
</html>

Save the file as confirm.php.

To record a booking, two actions must be carried out:

 The customer name, address and payment details must be saved into the caravanBooking table in
the database. A bookingID will be allocated.

 The corresponding record must be updated in the caravanWeeks table to indicate that the caravan
is now booked for the selected week. The bookingID will be added to the caravanWeeks record, so
that the customer details are linked to the caravan hire.

Open the CaravanBooking.php file and add a makeBooking() method.

 public static function makeBooking($caravanSelected,$weekSelected,$title,
 $forename,$surname, $address1,$address2,$town,$postcode,
 $paymentAmount,$cardType,$cardNumber,$expiryDate)
 {
 include('user.inc');
 $paymentDate = date("Y-m-d H:i:00");
 $conn = new mysqli(localhost, $username, $password, $database);
 if (!$conn) {die("Connection failed: ".mysqli_connect_error()); }
 $query="INSERT INTO caravanBooking VALUES('$bookingID','$paymentDate',
 '$caravanSelected','$weekSelected','$title','$forename',
 '$surname','$address1','$address2', '$town', '$postcode',
 '$paymentAmount','$cardType', '$cardNumber', '$expiryDate')";
 $result=mysqli_query($conn, $query);
 $bookingID = mysqli_insert_id($conn);
 CaravanWeek::confirmBooking($caravanSelected, $weekSelected, $bookingID);
 mysqli_close($conn);
 }

}
?>

Save CaravanBooking.php and copy it to the server. Notice that the makeBooking() method calls a
confirmBooking() method in the CaravanWeek class. We will add this method next.

Open CaravanWeek.php and add the confirmBooking() method shown below. This takes the

weekBeginning date and splits it into day, month and year. These date values are combined with the

caravan identification number to select the required caravan week record.

156

Web-based programming projects

 public static function confirmBooking($caravanSelected, $weekSelected, $bookingID)
 {
 $values=explode("-",$weekSelected);
 $day=$values[2];
 $month=$values[1];
 $year=$values[0];
 include ('user.inc');
 $conn = new mysqli(localhost, $username, $password, $database);
 if (!$conn) {die("Connection failed: ".mysqli_connect_error()); }
 $query="UPDATE caravanWeeks SET available='0',bookingID='".$bookingID.
 "'WHERE caravanNo='".$caravanSelected."' AND year='".$year.
 "' AND month = '".$month."' AND day = '".$day."'";
 $result=mysqli_query($conn, $query);
 mysqli_close($conn);
 }

}
?>

Save CaravanWeek.php and copy it to the server.

The final step in handling the booking is to call the methods to update the database tables. The booking
details will also be displayed on the confirmation page.

Go to confirm.php and add the lines of program code shown below.

 <form method=post action='index.php'>
 <tr>
 <th>Your booking is confirmed</th>
 </tr>

 <tr>
 <td>
 <?
 $caravanSelected=$_REQUEST['caravan'];
 $weekBeginning=$_REQUEST['week'];
 include ('Location.php');
 Location::loadLocations();
 $caravanName=Location::getName($caravanSelected);
 echo "Caravan: ".$caravanName;
 echo "<p>Week beginning: ". $weekBeginning;
 $data=explode("-",$weekBeginning);
 $weekDate=$data[2]."-".$data[1]."-".$data[0];
 include('CaravanBooking.php');
 include('CaravanWeek.php');
 CaravanBooking::makeBooking($caravanSelected, $weekDate, $title,
 $forename, $surname, $address1, $address2, $town, $postcode,
 $paymentAmount, $cardType, $cardNumber, $expiryDate);
 echo"<p>". $title." ".$forename." ".$surname;
 echo"
".$address1;
 echo"
".$address2;
 echo"
".$town.", ".$postcode;
 ?>
 </td></tr>
 <tr>
 <td></td><td>
<input type=submit value='return to home page'></td>
 </tr>

 </form>
</table>
</body>

157

Chapter 4: Caravan park

Save confirm.php and copy it to the server.

This completes the booking procedure. Careful testing is now necessary.

Run the website and go to the bookings page. Select a caravan and available week, making a note of the
selection. Click the 'make booking' button and enter full name, address and payment details for a
customer. Click the 'complete booking' button.

Return to the bookings page and check that the selected caravan week is now shown as unavailable. Open
the PHP MyAdmin web page and check that the booking details appear correctly in the caravanBooking
table. Make a note of the bookingID which was allocated.

Go to the caravanLocation table to obtain the caravan number, then find the required week and caravan in
the caravanWeeks table. Check that the available value is now set to 0, and the bookingID value has been
inserted correctly.

158

Web-based programming projects

With the public web pages completed, we can now move on to produce staff administration pages. These
should be password protected.

Open a blank file and add the program code below to produce a staff log-in page.

<?
 session_start();
 $_SESSION['login']='NO';
?>
<html>

 <head>
 <title>Celtic Holidays</title>
 </head>
 <body>
 <style>
 body {
 font-family: Arial, Helvetica, sans-serif;
 color: black;
 font-size: 12pt;
 }
 </style>

 <form action="staffBookings.php?caravanNoWanted=1&monthWanted=6" method="post">
 <h3>Staff Log-in</h3>
 <table border="0" cellpadding="10">
 <tr>
 <td>User name</td>
 <td>
 <?
 echo "<input type=text size=20 name=user >";
 ?>
 </td></tr>
 <tr>
 <td>Password</td>
 <td>
 <?
 echo "<input type=password size=20 name=pass >";
 ?>
 </td></tr>
 <tr>
 <td></td>
 <td>
 <input type=submit value="Enter">
 </td></tr>
 </table>
 </form>
 </body>
 </html>

Save the file as staffLogin.php and copy it to the server.

Run the website, specifying staffLogin.php in the URL. Check that input boxes for user name and password
are displayed as shown below. The creation of a staff login system was explained in more detail previously
in chapter 2: Hardware Store project.

159

Chapter 4: Caravan park

Go to the PHP MyAdmin website and open the database. A table with the name 'staff' is required,
containing fields as shown below. The staffID field should be set to auto-increment as records are added.

Select the database option to add records, and enter usernames and passwords for several members of
staff.

A Staff object class will now be created to link the log-in screen to the database table. Open a new file and
add the program code below. Save the file as Staff.php.

<?
class Staff
{
 private $user;
 private $pass;
 function __construct($userSet,$passSet)
 {
 $this->user = $userSet;
 $this->pass = $passSet;
 }
 private function checkUser($userWanted,$passWanted)
 {
 if (($userWanted==$this->user)&&($passWanted==$this->pass))
 return true;
 else
 return false;
 }
 }
 ?>

The program above defines the user name and password attributes for a Staff object, then provides a
constructor method to create the object. A checkUser() method then determines whether a particular
Staff object matches the log-in data entered.

Add a further method checkPassword() as shown in the two boxes below. This will access the database to
create a set of Staff objects, then uses a loop to check each object in turn for valid log-in values.

 public static function checkPassword($userWanted,$passWanted)
 {
 include ('user.inc');
 $conn = new mysqli(localhost, $username, $password, $database);
 if (!$conn) {die("Connection failed: ".mysqli_connect_error()); }
 $query="SELECT * FROM staff";
 $result=mysqli_query($conn, $query);
 $num=mysqli_num_rows($result);
 mysqli_close($conn);
 $i=1;
 while ($i <= $num)
 {
 $row=mysqli_fetch_assoc($result);
 $user=$row["staffUsername"];
 $pass=$row["staffPassword"];

160

Web-based programming projects

 while ($i <= $num)
 {
 $row=mysqli_fetch_assoc($result);
 $user=$row["staffUsername"];
 $pass=$row["staffPassword"];

 $staff[$i] = new Staff($user,$pass);
 $i++;
 }
 $found=false;
 for ($i=1;$i<=$num;$i++)
 {
 $answer= $staff[$i]->checkUser($userWanted,$passWanted);
 if ($answer==true)
 {
 $found=true;
 }
 }
 return $found;
 }

 }
 ?>

Save the Staff.php file and copy it to the server.

When a member of staff clicks the 'Enter' button on the log-in screen, they will be taken to a booking
calendar page very similar to the public booking page. We can therefore save programming time by
copying this existing file. Open bookings.php and re-save it as staffBookings.php.

Some changes then need to be made. We will begin by setting up the staff log-in system. Add the block of
PHP code shown below to the start of the staffBookings.php file.

 <?
 session_start();
 $user=$_REQUEST['user'];
 $pass=$_REQUEST['pass'];
 $login=$_SESSION['login'];
 if (!($_SESSION['login']=='YES'))
 {
 include('Staff.php');
 if (Staff::checkPassword($user,$pass)==false)
 header('Location: staffLogin.php');
 else
 $_SESSION['login']='YES';
 }
 ?>

 <html>
 <head>
 <title> Celtic Holidays </title>
 <?
 $caravanNoWanted=$_REQUEST['caravanNoWanted'];
 $monthWanted=$_REQUEST['monthWanted'];

Save staffBookings.php and copy it to the server. Test the log-in system by running the website staffLogin
page. If a correct staff user name and password are entered, the booking calendar page should open.
However, an incorrect entry will immediately return the user to the log-in page.

161

Chapter 4: Caravan park

Re-open staffBookings.php. Change the address shown in the window.location and <form> commands,
replacing 'bookings.php' with 'staffBookings.php' as shown below. This ensures that the page is reloaded
correctly when a different caravan or calendar month is selected.

 xdiff = Math.abs(x-mx);
 ydiff = Math.abs(y-my);
 if ((xdiff<20)&&(ydiff<20))
 {
 caravanNoWanted=caravan[i].caravanNo;
 markCaravan(caravanNoWanted);

 window.location = "staffBookings.php?caravanNoWanted="
 +caravanNoWanted+"&monthWanted="+monthWanted;

 }
 }
 }
 </script>
 <?

 echo"<form method=post action='staffBookings.php?caravanNoWanted="
 .$caravanNoWanted."&monthWanted=".$monthWanted."'>";

 ?>
 <table width=900>
 <tr><td width=320>

On the public booking calendar, colour coding only distinguished between weeks available for booking and
weeks when the caravan was not available. On the staff calendar, however, we will further distinguish
between weeks when a booking has been made (red), weeks when the caravan is still available for hire
(cream), and weeks when the caravan is not offered for hire (grey) – for example, if maintenance is being
carried out. To allow for the additional coloured background, go to the <style> block near the start of the
staffBookings.php file and update the entries as shown below.

 table.cal {
 border-collapse: collapse;
 }

 th.cal, td.cal, td.av, td.bk, td.cl {
 border: 1px solid gray;
 }

 th.cal {
 background-color: #cfcfcf;
 color: black;
 padding: 15px;
 text-align: left;
 }

 td.cl {
 padding: 5px;
 text-align: left;
 background-color: #cccccc;
 }

 td.cal {
 padding: 5px;
 text-align: left;
 background-color: #ffffff;
 }

162

Web-based programming projects

Make further changes to staffBookings.php, replacing lines of code as shown below:

The first correction involves the buttons which appear alongside available caravan weeks and offer a 'make
booking' option. For staff, the buttons should appear alongside booked weeks, and allow the customer and
payment details to be displayed.

The second correction relates to the display styles for the cells in the calendar table. Available weeks
continue to be shown with a cream background, identified as class 'av'. Other weeks are now divided into
bookings shown in red and identified as class 'bk', and closed weeks shown in grey and identified as class
'cl'.

 $count1=0;
 $count2=0;
 $display1=false;
 $display2=false;
 for ($w=1;$w<=6;$w++)
 {
 echo"<tr>";

 if (($bookingCode1[$w]==0)&&(strlen($caption1[$w])>1))
 echo"<td align=right width=320> £".$caption1[$w]."<button name='week'
 value='$weekBeginning1[$w]'>booking details > </button>";

 else
 echo"<td width=320>";
 for ($d=1;$d<=7;$d++)
 {
 if ($firstDay1==$dayName[$d])
 {
 $display1=true;
 }
 if ($count1>=$lastDay1)
 {
 $display1=false;
 }
 if ($display1==true)
 {
 $count1++;
 if ($bookingCode1[$w]==1)
 echo"<td class='av' width=50>".$count1;

 else if ($bookingCode1[$w]==0)
 echo"<td class='bk' width=50>".$count1;
 else if ($bookingCode1[$w]==2)
 echo"<td class='cl' width=50>".$count1;

 else
 echo"<td class='cal' width=50>".$count1;
 }
 else
 echo "<td class='cal' width=50> ";

Save staffBookings.php and copy it to the server. Run the website and log-in as a member of staff. The
changes outlined above should now have been applied to the left-hand calendar month.

163

Chapter 4: Caravan park

Re-open staffBookings.php and make similar changes for the right-hand month display, as shown below.

 for ($d=1;$d<=7;$d++)
 {
 if ($firstDay2==$dayName[$d])
 {
 $display2=true;
 }
 if ($count2>=$lastDay2)
 {
 $display2=false;
 }
 if ($display2==true)
 {
 $count2++;
 if ($bookingCode2[$w]==1)
 echo"<td class='av' width=50>".$count2;

 else if ($bookingCode2[$w]==0)
 echo"<td class='bk' width=50>".$count2;
 else if ($bookingCode2[$w]==2)
 echo"<td class='cl' width=50>".$count2;

 else
 echo"<td class='cal' width=50>".$count2;
 }
 else
 echo "<td class='cal' width=50> ";
 }

 if (($bookingCode2[$w]==0)&&(strlen($caption2[$w])>1))
 echo"<td width=320><button name='week' value='$weekBeginning2[$w]'>
 < booking details </button> £".$caption2[$w];

 else
 echo"<td width=320>";
 }

Save staffBookings.php and copy it to the server. Run the website again as a member of staff. The
calendar display should now show closed weeks in grey for both months, with buttons appearing alongside
booked weeks.

Re-open the staffBookings.php file and make a change to the echo"<form>" line shown below, so that a
new page staffDisplayBooking.php will be loaded when a 'booking details' button is clicked. Save the
updated staffBookings.php file.

 case 10:$monthName='October';break;
 case 11:$monthName='November';break;
 case 12:$monthName='December';break;
 }
 return $monthName;
 }

 echo"<form method=post action='staffDisplayBooking.php
 ?caravanNoWanted=".$caravanNoWanted."'>";

 echo"<table class='cal' width=1100>";
 echo"<tr><td>";
 $firstMonth=getMonthName($monthWanted);
 $nextMonth=intval($monthWanted+1);

164

Web-based programming projects

Before proceeding any further with the staff website, we should delete the random data that was used for
testing the calendar display and re-initialise the caravanWeeks table.
Go to the PHP MyAdmin web page and open the caravanWeeks table. Select the 'Operations' option at the

top of the page, then click 'Empty the table (TRUNCATE)'. Return to the data display and check that the

table is now empty. Use the same procedure to empty the caravanBooking table.

Open the CaravanWeek.php class file. Locate the initialiseBookings() method, and change the line which

sets the value for $bookingCode. This change removes the random() function.

 else
 $price = 440.00;
 }
 }
 }
 }

 $bookingCode=1;

 $query="INSERT INTO caravanWeeks VALUES ('','$van','$year',
 '$month', '$i','$price','$bookingCode','0')";
 echo"
".$query;
 $result=mysql_query($query);
 }
 }
 }

Save CaravanWeek.php and copy it to the server. When the initialiseBookings() method is run, all caravan
weeks will be set to booking code 1, indicating that the caravan is available for hire.

Open the staffBookings.php file and add lines of code at the beginning of the program to run the

initialiseBookings() method.

<?
 session_start();

 include('CaravanWeek.php');
 CaravanWeek::initialiseBookings(2020);

 $user=$_REQUEST['user'];
 $pass=$_REQUEST['pass'];
 $login=$_SESSION['login'];
 if (!($_SESSION['login']=='YES'))
 {

Save staffBookings.php and copy it to the server.

Load the website staff log-in page. Enter the user name and password for a member of staff. The
staffBookings page will then load and the initialiseBookings() method will run. Immediately close the web
page by means of the cross symbol on the browser tab.

Set to the required

calendar year, e.g. 2022

165

Chapter 4: Caravan park

Go to the PHP MyAdmin page and check that a set of 1560 caravan week records has been created, with all
entries in the available field set to a value of 1. Re-open staffBookings.php and remove the two lines of
code outlined above, so that the initialiseBookings() method will not be re-run. Save staffBookings.php
and copy it to the server.

Run the website, this time as a customer. Go to the bookings page and check that all caravans are shown
as available. Make a booking, keeping a note of the caravan, week, and customer details.

Our next objective is to produce a staff page to display details of the booking just entered. Open a blank

file and add the lines of program code shown below.

 <html>
<head>
 <title> Celtic Holidays </title>
 <style>
 body
 {
 font-family: Arial, Helvetica, sans-serif;
 color: black;
 }
 </style>
 </head>
 <body>
 <?
 $caravanSelected=$_REQUEST['caravanNoWanted'];
 $weekBeginning=$_REQUEST['week'];
 include ('Location.php');
 Location::loadLocations();
 $caravanName=Location::getName($caravanSelected);
 echo "Caravan: ".$caravanName;
 echo "<p>Week beginning: ". $weekBeginning;
 ?>
 </body>
 </html>

Save the file as staffDisplayBooking.php and copy this to the server.

Run the website staff log-in page and enter a staff username and password. When the staff bookings page
has loaded, locate the booking on the calendar and click the 'booking details' button. The name of the
caravan and week beginning date should be displayed.

166

Web-based programming projects

When this is working correctly, return to the staffDisplayBooking.php file and remove the two 'echo' lines
outputting the caravan name and week. These were for test purposes only. Re-save the file.

Further details of the booking can now be displayed. To do this, we must add methods to the
CaravanBooking.php class file as shown below:

 A series of get() methods will allow access to the private attributes of the Booking object.

 The loadBookingByID() method will access the caravanBooking table in the database and obtain
the record with the required bookingID value. The record is then used to construct a Booking
object, identified as the array member $booking[0].

 public function getBookingID(){return $this->bookingID;}
 public function getPaymentDate(){return $this->paymentDate;}
 public function getCaravanNo(){return $this->caravanNo;}
 public function getWeekBeginning(){return $this->weekBeginning;}
 public function getTitle(){return $this->title;}
 public function getForename(){return $this->forename;}
 public function getSurname(){return $this->surname;}
 public function getAddress1(){return $this->address1;}
 public function getAddress2(){return $this->address2;}
 public function getTown(){return $this->town;}
 public function getPostcode(){return $this->postcode;}
 public function getPaymentAmount(){return $this->paymentAmount;}
 public function getCardType(){return $this->cardType;}
 public function getCardNumber(){return $this->cardNumber;}
 public function getExpiryDate(){return $this->expiryDate;}

 public static function loadBookingByID($bookingIDwanted)
 {
 include ('user.inc');
 $conn = new mysqli(localhost, $username, $password, $database);
 if (!$conn) {die("Connection failed: ".mysqli_connect_error()); }
 $query="SELECT * FROM caravanBooking WHERE bookingID='".$bookingIDwanted."'";
 $result=mysqli_query($conn, $query);
 mysqli_close($conn);
 $row=mysqli_fetch_assoc($result);
 $paymentDate=$row["paymentDate"];
 $caravanNo=$row["caravanNo"];
 $weekBeginning=$row["weekBeginning"];
 $title==$row["title"];
 $forename=$row["forename"];
 $surname=$row["surname"];
 $address1=$row["address1"];
 $address2=$row["address2"];
 $town=$row["town"];
 $postcode=$row["postcode"];
 $paymentAmount=$row["paymentAmount"];
 $cardType=$row["cardType"];
 $cardNumber=$row["cardNumber"];
 $expiryDate=$row["expiryDate"];
 $obj = new CaravanBooking($bookingIDwanted,$paymentDate,$caravanNo,
 $weekBeginning,$title,$forename,$surname,$address1,$address2,
 $town,$postcode, $paymentAmount,$cardType,$cardNumber,$expiryDate);
 CaravanBooking::$booking[0] = $obj;
 }

}
?>

167

Chapter 4: Caravan park

Save the CaravanBooking.php file and copy it to the server.

Return to the staffDisplayBooking.php file and add lines of program code to display the customer name,

address and payment details as shown on the following two pages, then save the file.

 <?
 $caravanSelected=$_REQUEST['caravanNoWanted'];
 $weekBeginning=$_REQUEST['week'];
 include ('Location.php');
 Location::loadLocations();
 $caravanName=Location::getName($caravanSelected);

 $data = explode("-",$weekBeginning);
 $month=$data[1];
 include ('CaravanBooking.php');
 include('CaravanWeek.php');
 $bookingIDwanted=CaravanWeek::loadBookingID($caravanSelected,
 $weekBeginning);
 CaravanBooking::loadBookingByID($bookingIDwanted);
 echo"<form method=post action='staffBookings.php?caravanNoWanted=".
 $caravanSelected."&monthWanted=".$month."'>";

 ?>

 <table cellpadding=4>
 <tr>
 <td colspan=3><h3>Booking</td></tr>
 <tr><td></td><td>
 Caravan: </td>
 <td>
 <?
 echo $caravanName;
 ?> </td></tr>
 <tr><td></td><td>
 Week beginning: </td>
 <td>
 <?
 echo $weekBeginning;
 ?> </td></tr>
 <tr><td>
</td></tr>
 <tr>
 <td colspan=3><h3>Customer details</td></tr>
 <tr><td></td><td>Booking ID: </td>
 <td>
 <?
 echo $bookingIDwanted;
 ?> </td></tr>
 <tr><td></td><td>Customer: </td>
 <td>
 <?
 echo CaravanBooking::$booking[0]->getTitle()." ".
 CaravanBooking::$booking[0]->getForename()." ".
 CaravanBooking::$booking[0]->getSurname();
 ?> </td></tr>
 <tr><td></td><td>Address: </td>
 <td>
 <?
 echo CaravanBooking::$booking[0]->getAddress1()."</td></tr>";
 $address2 = CaravanBooking::$booking[0]->getAddress2();
 if (strlen($address2)>0)
 echo"<tr><td></td><td></td><td>".$address2."</td></tr>";
 ?>

168

Web-based programming projects

 <tr><td></td><td></td><td>
 <?
 echo CaravanBooking::$booking[0]->getTown()."</td></tr>";
 ?>
 <tr><td></td><td></td><td>
 <?
 echo CaravanBooking::$booking[0]->getPostcode()."</td></tr>";
 ?>
 <tr><td colspan=3><h3>Payment</td></tr>
 <tr><td></td><td>Payment amount: </td>
 <td>
 <?
 echo "£".CaravanBooking::$booking[0]->getPaymentAmount()."</td></tr>";
 ?>
 <tr><td></td><td>Payment date: </td>
 <td>
 <?
 $paymentDate=CaravanBooking::$booking[0]->getPaymentDate();
 echo substr($paymentDate,8,2)."-".substr($paymentDate,5,2).
 "-".substr($paymentDate,0,4) ."</td></tr>";
 ?>
 <tr><td></td><td>Card type: </td>
 <td>
 <?
 echo CaravanBooking::$booking[0]->getCardType()."</td></tr>";
 ?>
 <tr><td></td><td>Card number: </td>
 <td>
 <?
 echo CaravanBooking::$booking[0]->getCardNumber()."</td></tr>";
 ?>
 <tr><td></td><td>Expiry date: </td>
 <td>
 <?
 echo CaravanBooking::$booking[0]->getExpiryDate()."</td></tr>";
 ?>
 <tr><td></td><td></td><td>

<input type=submit value='return to booking calendar'></td></tr>
 </table>
 </form>

 </body>
 </html>

One final task is to add a method to the CaravanWeek class file to obtain the bookingID for the required
caravan and week. Open the file CaravanWeek.php and add the loadBookingID() method shown in the
two boxes below, then save the file.

 public static function loadBookingID($caravanNoWanted,$weekBeginning)
 {
 $data = explode("-",$weekBeginning);
 $day=$data[0];
 $month=$data[1];
 $year=$data[2];
 include ('user.inc');
 $conn = new mysqli(localhost, $username, $password, $database);
 if (!$conn) {die("Connection failed: ".mysqli_connect_error()); }

169

Chapter 4: Caravan park

 if (!$conn) {die("Connection failed: ".mysqli_connect_error()); }

 $query="SELECT * FROM caravanWeeks WHERE caravanNo=".$caravanNoWanted.
 " AND year=".$year." AND month=".$month." AND day=".$day;
 $result=mysqli_query($conn, $query);
 mysqli_close($conn);
 $row=mysqli_fetch_assoc($result);
 $bookingID=$row["bookingID"];
 return $bookingID;
 }

 }
 ?>

Copy the staffDisplayBooking.php and CaravanWeek.php files to the server. Run the website and log-in as
a member of staff. Select the booking made earlier and check that all details are now displayed correctly.

Staff using the booking system will require a facility to change the hire charges for particular caravans, or
show caravans as unavailable if maintenance is required. We will add a page now to provide these
functions.

Re-open staffBookings.php and add lines of program code to provide a 'set availability and prices' button.

 <canvas id="myCanvas" width="510" height="400"
 style="border:1px solid #d3d3d3;" onmousedown="mouseDown()">
 </canvas>
 </td>
 <td width=100></td>
 <td width = 400 style="vertical-align:top">

 <?
 echo"<form method=post action='setPrices.php?caravanID=".
 $caravanNoWanted."'>";
 ?>
 <input type=submit value="set availability and prices">
 </form>

 <h3><p id="caravanName" ></p></h3>

170

Web-based programming projects

Save the staffBookings.php file and copy it to the server. Run the website and log-in as a member of staff.
Check that the button has been added above the caravan image.

Open a blank file and add the program code below. This takes the number of the currently selected
caravan and determines the number and name of the caravan group to which it belongs. The numbers of
the first and last caravan within the group are also recorded.

Save the file as setPrices.php.

<?
 $caravanID=$_REQUEST["caravanID"];
 include('Location.php');
 Location::loadLocations();
?>
<html>
 <head>
 <title> Celtic Holidays </title>
 <style>
 body {font-family: Arial, Helvetica, sans-serif; color: black; }
 td {font-size: 12pt;}
 </style>
 </head>
 <body>
 <?
 echo"<form method=post action='updatePrices.php?caravanID=".
 $caravanID."' onsubmit='return submitForm(this)'>";
 $first=0;
 $last=0;
 if ($caravanID<=9)
 { $groupWanted=1; $caravanClass="Flower";
 $first=1; $last=9; }
 else if ($caravanID<=14)
 { $groupWanted=2; $caravanClass="Tree";
 $first=10; $last=14; }
 else if ($caravanID<=20)
 { $groupWanted=3; $caravanClass="River";
 $first=15; $last=20; }
 else if ($caravanID<=24)
 { $groupWanted=4; $caravanClass="Mountain";
 $first=21; $last=24; }
 else
 { $groupWanted=5; $caravanClass= "Castle";
 $first=25; $last=30; }
 ?>
 </body>
 </html>

171

Chapter 4: Caravan park

We will now add input boxes to create a dialogue page. The user will be able to select particular caravans

within the currently selected group by means of a set of check boxes.

 { $groupWanted=5; $caravanClass= "Castle";
 $first=25; $last=30; }

 echo"<input type='hidden' name='first' value='".$first."'>";
 echo"<input type='hidden' name='last' value='".$last."'>";
 echo"<table><tr>";
 echo"<td><h3>".$caravanClass." class</h3></td></tr>";
 echo"<tr><td></td><td>Apply to:

</td></tr>";
 for ($i=1;$i<=Location::$caravanCount; $i++)
 {
 $number = Location::$caravan[$i]->getCaravanNo();
 if (($number>=$first)&&($number<=$last))
 {
 echo"<tr><td>";
 $caravanName = Location::getName($number);
 echo"<td><input type='checkbox' name='caravan".$number.
 "' value='YES'> ".$caravanName;
 echo"</td></tr>";
 }
 }
 echo"<tr><td></td><td>

Period: </td></tr>";
 echo"<tr><td></td><td>First week beginning Saturday <input type=date
 name=firstWeek></td></tr>";
 echo"<tr><td></td><td>to</td></tr>";
 echo"<tr><td></td><td>Last week beginning Saturday <input type=date
 name=lastWeek></td></tr>";
 echo"<tr><td></td><td>

";
 echo"<input type='radio' name='available' id='unavailable' value='NO'
 checked>Unavailable</td></tr>";
 echo"<tr><td></td><td>
";
 echo"<input type='radio' name='available' value='YES' >Available:";
 echo" weekly rental charge £ ";
 echo"<input type=text size=6 id='weekCost' name ='weekCost'></td></tr>";
 echo"<tr><td></td><td>";
 echo"

";
 echo"<input type='submit' value='apply changes'></td></tr>";

 ?>

 </form>
 <tr><td></td><td>

 <?
 echo"<form method=post action='staffBookings.php?caravanNoWanted=".
 $caravanID."&monthWanted=6'>";
 ?>

 <input type=submit value='Cancel'></td></tr>
 </form>
 </table>

 </body>
</html>

172

Web-based programming projects

Save the setPrices.php file and copy it to the server. Run the website and log-in as a member of staff. On

the bookings page, select a caravan from any group then click the 'set availability and prices' button. Check

that the list of caravans for the selected group are shown with check boxes.

The processing of the availability and price update is quite complex, so a flowchart of the sequence is given
on the next page.

 When the user clicks the 'apply changes' button, the data entries will be checked for consistency.
Error messages will be displayed if:

Unavailable is selected, but a weekly rental charge has been entered.
Available is selected, but no weekly rental charge has been entered.

 After confirming that the user wishes changes to be applied to the database, a new page
updatePrices.php will be loaded. A function will use the specified start and finish dates to make a
list of the Saturday week beginning dates which are to be included.

 A loop will operate for each caravan selected. Within this, an inner loop will repeat for each week
beginning date.

 The availability code for the current caravan and week will be obtained from the database. If the
caravan availability or price is to be changed, but the code indicates that it has already been
booked to a customer, then an error message will be displayed.

 Where no error is detected, the caravanWeek record will be updated to show the requested
availability and weekly hire charge values.

173

Chapter 4: Caravan park

174

Web-based programming projects

Re-open the setPrices.php file and add a JavaScript function at the end of the file. This checks the input
data when the user clicks the 'apply changes' button. Two error conditions are:

 Setting a hire charge for a week when the caravan is marked as ‘unavailable’.

 Specifying an available carvan week, but not entering a hire charge.

 <input type=submit value='Cancel'>
 </form>
 </table>

 <script>
 function submitForm()
 {
 unavailable=document.getElementById("unavailable").checked;
 weekCost=document.getElementById("weekCost").value;
 if ((unavailable==true)&&(weekCost>0))
 {
 alert('ERROR: Caravan unavailable but a weekly charge has been set');
 return false;
 }
 else
 if ((unavailable==false)&&(weekCost==0))
 {
 alert('ERROR: Caravan available but no weekly charge specified');
 return false;
 }
 else
 return confirm('Are you sure that you want to apply these changes?');
 }
 </script>

 </body>
 </html>

Save the setPrices.php file and copy it to the server. Run the website as staff and continue to the 'set
availability and prices' option. Enter inconsistent data and check that error messages are displayed. Enter
valid data and check that a confirm dialogue is displayed.

Open a new blank file and add the program code below.

175

Chapter 4: Caravan park

<?
 $available=$_REQUEST["available"];
 $weekCost=$_REQUEST["weekCost"];
 $firstWeek=$_REQUEST["firstWeek"];
 $lastWeek=$_REQUEST["lastWeek"];
 $first=$_REQUEST["first"];
 $last=$_REQUEST["last"];
 $caravanID=$_REQUEST["caravanID"];
?>
<html>
<head>
 <title> Celtic Holidays </title>
 <style>
 body {
 font-family: Arial, Helvetica, sans-serif;
 color: black;
 font-size: 14pt;
 }
 </style>
</head>
<body>
 <?
 echo"Start date: ".$firstWeek;
 echo"<p>Finish date: ".$lastWeek;
 ?>
</body>
</html>

Save the file as updatePrices.php and copy it to the server. Run the website and log-in as a staff member.

Go to the bookings page and click the 'set availability and prices' button. Complete the data entry form,

including start and finish dates for the update period, then click 'apply changes'. For test purposes, the two

dates are displayed in year-month-day format. Check that these are correct.

Re-open the updatePrices.php file. Go to the <body> section and add a function findWeekBeginning() as
shown in the two boxes below. This will determine all Saturday week starting dates during the period
specified. These dates are stored in the array $weekBeginning in year-month-day format, which is returned
by the function. Other lines added to the program will call the findWeekBeginning() function, and then
display the list of dates for test purposes.

<body>
<?
 echo"Start date: ".$firstWeek;
 echo"<p>Finish date: ".$lastWeek;

 $weekBeginning=findWeekBeginning($firstWeek,$lastWeek);
 $weekCount=sizeof($weekBeginning);
 for ($i=1; $i<=$weekCount;$i++)
 {
 echo"<p>week beginning ".$weekBeginning[$i];
 }

 function findWeekBeginning($firstWeek,$lastWeek)
 {

176

Web-based programming projects

 function findWeekBeginning($firstWeek,$lastWeek)
 {

 $year1=substr($firstWeek,0,4); $year2=substr($lastWeek,0,4);
 $month1=substr($firstWeek,5,2); $month2=substr($lastWeek,5,2);
 $day1=substr($firstWeek,8,2); $day2=substr($lastWeek,8,2);
 $count=0;
 for ($year=$year1; $year<=$year2; $year++)
 {
 for($month=$month1; $month<=$month2; $month++)
 {
 if ($month>$month1)
 $dayStart=1;
 else
 $dayStart=$day1;
 if ($month<$month2)
 $dayFinish=31;
 else
 $dayFinish=$day2;
 for($day=$dayStart; $day<=$dayFinish; $day++)
 {
 $dayname = date("D", strtotime($year."-".$month."-".$day));
 if ($dayname == "Sat")
 {
 $count++;
 $weekBeginning[$count] = $year."-".$month."-".$day;
 }
 }
 }
 }
 return $weekBeginning;
 }

 ?>
 </body>
 </html>

Save the updatePrices.php file and copy it to the server. Run the website as previously and navigate to the
'set availability and prices' page. Complete the data entry form and then click 'apply changes'. Check that
all Saturday week start dates during the selected period are listed, as in the example below.

Reopen updatePrices.php. The next step is to list the caravans which will be included in the update
procedure. Add the lines of program code shown below. These collect results from the set of check boxes
on the input page, then use these to list the caravan numbers and names.

177

Chapter 4: Caravan park

<body>
<?
 echo"Start date: ".$firstWeek;
 echo"<p>Finish date: ".$lastWeek;
 $weekBeginning=findWeekBeginning($firstWeek,$lastWeek);
 $weekCount=sizeof($weekBeginning);

 include('Location.php');
 Location::loadLocations();
 for ($c=$first; $c<=$last; $c++)
 {
 $caravanWanted="caravan".$c;
 $includeCaravan = $_REQUEST[$caravanWanted];
 if ($includeCaravan=='YES')
 {
 $caravanName=Location::getName($c);
 echo"<p>Caravan number ".$c.": ".$caravanName;

 for ($i=1; $i<=$weekCount;$i++)
 {
 echo"<p>week beginning ".$weekBeginning[$i];
 }

 }
 }

 function findWeekBeginning($firstWeek,$lastWeek)
 {

Save updatePrices.php and copy it to the server. Run the website, navigate to the update page and enter
test data for caravans and dates as previously. On selecting 'apply changes', each caravan should be listed,
along with the week beginning dates for which the caravan's records will be updated.

The program will now call a method in the CaravanWeek class file to carry out the actual database update.
Re-open the updatePrices.php file and add a line to include the CaravanWeek class and call a
setAvailability() method. This method has input parameters representing the caravan number, week
beginning date, availability and weekly hire charge. This information is needed to identify the correct
record in the caravanWeeks table, then update the availability status and/or weekly cost. Remove the
'echo' lines which were included for test purposes, and insert the lines of program code shown below.

178

Web-based programming projects

 $weekBeginning=findWeekBeginning($firstWeek,$lastWeek);
 $weekCount=sizeof($weekBeginning);
 include('Location.php');
 Location::loadLocations();

 include('CaravanWeek.php');

 for ($c=$first; $c<=$last; $c++)
 {
 $caravanWanted="caravan".$c;
 $includeCaravan = $_REQUEST[$caravanWanted];
 if ($includeCaravan=='YES')
 {
 $caravanName=Location::getName($c);
 for ($i=1; $i<=$weekCount;$i++)
 {

 CaravanWeek::setAvailability($c,$weekBeginning[$i],$available,$weekCost);

 }
 }
 }

Save the updatePrices.php file and copy it to the server.

Open the CaravanWeek.php class file and add a new method setAvailability(). Week-beginning dates in
the caravanWeeks table are represented as three separate fields for year, month and day. The method
begins by splitting the date into these fields. We then add a test line to check that all the data required for
the update is available.

 public static function setAvailability($caravanNo, $weekBeginning,
 $available,$weekCost)
 {
 $data = explode("-",$weekBeginning);
 $year=$data[0];
 $month=$data[1];
 $day=$data[2];
 echo"
".$caravanNo.", ".$year.", ".$month.", ".$day.", ".
 $available.", ".$weekCost;
 }

 }
 ?>

Save CaravanWeek.php and copy it to the server.

Run the website, navigate to the update page and enter test data as previously. On selecting 'apply
changes', a series of lines of data should be displayed representing:
 caravanNo, week beginning: year, month, day, availability: YES or NO, and price(if specified)

179

Chapter 4: Caravan park

We are almost ready to update the database record, but a couple of tasks remain.

 The existing database record should be checked in case the caravan has already been booked by a
customer for the specified week. In this situation, the update will not be carried out and a warning
message will be displayed.

 A request to make the caravan unavailable, currently recorded as a 'NO' value, should be entered
as code 2 in the database table. A request for the caravan to be available, currently recorded as
'YES', should be entered as code 1.

Re-open the CaravanWeek.php file and add the program code shown below to the setAvailability()
method. This accesses the existing caravanWeek record to obtain the availability code. If this has a value
of 0, a booking already exists and an error message is displayed.

 public static function setAvailability($caravanNo, $weekBeginning,
 $available,$weekCost)
 {
 $data = explode("-",$weekBeginning);
 $year=$data[0];
 $month=$data[1];
 $day=$data[2];
 echo"
".$caravanNo.", ".$year.", ".$month.", ".$day.", ".
 $available.", ".$weekCost;

 Location::loadLocations();
 include ('user.inc');
 $conn = new mysqli(localhost, $username, $password, $database);
 if (!$conn) {die("Connection failed: ".mysqli_connect_error()); }
 $query="SELECT * FROM caravanWeeks WHERE caravanNo='".$caravanNo.
 "' AND year = '".$year."' AND month = '".$month.
 "' AND day = '".$day."'";
 $result=mysqli_query($conn, $query);
 $row=mysqli_fetch_assoc($result);
 $currentAv=$row["available"];
 if ($currentAv==0)
 {
 echo"

<h2 style='color:red;'>Warning</h2>";
 $caravanName=Location::getName($caravanNo);
 echo"<hr>";
 echo"
Caravan: ".$caravanName;
 echo"
weekBeginning ".(string)$day."-".(string)$month.
 "-".(string)$year;
 echo"
is already booked. This record will not be updated.";
 echo"
<hr>
";
 }
 mysqli_close($conn);

 }
 }
 ?>

Re-save CaravanWeek.php and copy it to the server.

Run the website, navigate to the update page. Enter test data which includes a caravan week which is
already shown on the calendar as booked. Click the 'apply changes' button and check that a warning
message is displayed as below.

The test should be repeated for both an attempt to make a booked caravan unavailable, and an attempt to

change the weekly hire charge for a booked caravan.

180

Web-based programming projects

Assuming that no error has been found, the caravan week record can now be updated. Re-open the
CaravanWeek.php file and add the program code shown below to the setAvailability() method.

 if ($currentAv==0)
 {
 echo"

<h2 style='color:red;'>Warning</h2>";
 $caravanName=Location::getName($caravanNo);
 echo"<hr>";
 echo"
Caravan: ".$caravanName;
 echo"
weekBeginning ".(string)$day."-".(string)$month.
 "-".(string)$year;
 echo"
is booked. This record will not be set as unavailable.";
 echo"
<hr>
";
 }

 else
 {
 if ($available=='YES')
 $av = 1;
 if ($available=='NO')
 $av = 2;
 $query="UPDATE caravanWeeks SET price='".$weekCost."',available='".
 $av."' WHERE caravanNo='".$caravanNo. "' AND year = '".
 $year."' AND month = '".$month."' AND day = '".$day."'";
 $result=mysqli_query($conn, $query);
 }

 mysqli_close($conn);
 }
 }
 ?>

The 'echo' line near the start of the setAvailability() method:

 echo"
".$caravanNo.", ".$year.", ".$month.", ".$day.", ".
 $available.", ".$weekCost;

displaying the sets of weekly data was for testing purposes only, and can now be deleted. Re-save
CaravanWeek.php and copy it to the server.

After updating the caravan week records, the program will return to the updatePrices page. Here we can
display a message to confirm that the update has taken place.

Re-open updatePrices.php and add a message and 'continue' button.

181

Chapter 4: Caravan park

 if ($includeCaravan=='YES')
 {
 $caravanName=Location::getName($c);
 for ($i=1; $i<=$weekCount;$i++)
 {
 CaravanWeek::setAvailability($c,$weekBeginning[$i], $available,$weekCost);
 }
 }
 }

 ?>
 <form method=post action="staffBookings.php?caravanNoWanted=1&monthWanted=6">

Update completed

<input type='submit' value='continue'>
 </form>
 <?

 function findWeekBeginning($firstWeek,$lastWeek)
 {
 $year1=substr($firstWeek,0,4); $year2=substr($lastWeek,0,4);
 $month1=substr($firstWeek,5,2); $month2=substr($lastWeek,5,2);

Save updatePrices.php and copy it to the server. Run the website with correct and incorrect test data.
Check that the completion message and 'continue' button are displayed, along with any error message, and
the button takes the user back to the bookings page.

Carry out a systematic series of tests to check that caravans can be set as unavailable for particular weeks
(shown in grey on the calendar display) or the weekly hire charges can be changed for particular weeks.

182

Web-based programming projects

Further development

A variety of functions have been added to the caravan booking system, but this is still some distance away
from completion. For example, a fully functioning system should allow for cancellation of bookings.
Booking confirmation would be sent by e-mail, as in the Airline Booking system in chapter 2 of this book. A
graphical input screen may be needed to allow for the easy addition or removal of caravans from the site
map.

A variety of booking system websites might use a calendar display similar to this caravan booking system.
These might include hotels, restaurants or package holidays. The map display selection function might be
used for allocation of pitches for tents or touring caravans in a camp site.

Summary of the object structures

Staff

A Staff object contains the staffID which is set by the
database as an auto-number, along with the user name and
password. Two methods are included which check the
input data for valid log-in details. The public method
checkPassword() calls the private method checkUser() to
examine each Staff object in turn, then returns an overall
true/false result depending on whether valid log-in details
were found.

Location

A Location object is created for each individual caravan. Attributes specify the caravan number and name,
and give (x,y) coordinates for the four corners of a rectangle to represent the caravan on the site plan. A
method allows a caravan name to be retrieved by specifying the caravan number. The set of Location
objects are created in PHP from the database table, and are then copied to an equivalent set of objects in
JavaScript for use in interactive graphics on the web page.

Description

A Description object is provided for each caravan group. It has attributes specifying the number of persons
that the caravan can accommodate, a text description of the caravan and its facilities, and the file name for
a photograph of a caravan which is representative of the group. The set of Description objects are created
in PHP from the database table, and are then copied to an equivalent set of objects in JavaScript for use in
interactive graphics on the web page.

CaravanWeek

A CaravanBooking object can be created for each week of the year for each caravan. The object attributes
specify the hire charge for the week, the current booking status, and can provide a link to the customer
booking details if the caravan is booked for the week. An initialisation method allows the set of
CaravanWeek objects to be created for a calendar year, including the setting of hire charges. Methods
allow caravan weeks to be specified as available, booked, or unavailable e.g. during maintenance, and for
hire charges to be re-set. Methods allow the loading of all caravan week objects for a particular caravan for
the year, or just for a specified week.

CaravanBooking

Attributes of CaravanBooking objects record the contact details and payment details for customers.
Methods allow a booking to be added to the database, and for a particular booking identified by the
bookingID to be retrieved and displayed.

183

Chapter 4: Caravan park

- private

+ public

underlined static

